Abstract
Abusive text (indiscriminate slang, abusive language, and profanity) on the Internet is not just a message but rather a tool for very serious and brutal cyber violence. It has become an important problem to devise a method for detecting and preventing abusive text online. However, the intentional obfuscation of words and phrases makes this task very difficult and challenging. We design a decision system that successfully detects (obfuscated) abusive text using an unsupervised learning of abusive words based on word2vec's skip-gram and the cosine similarity. The system also deploys several efficient gadgets for filtering abusive text such as blacklists, n-grams, edit-distance metrics, mixed languages, abbreviations, punctuation, and words with special characters to detect the intentional obfuscation of abusive words. We integrate both an unsupervised learning method and efficient gadgets into a single system that enhances abusive and non-abusive word lists. The integrated decision system based on the enhanced word lists shows a precision of 94.08%, a recall of 80.79%, and an f-score of 86.93% in malicious word detection for news article comments, a precision of 89.97%, a recall of 80.55%, and an f-score 85.00% for online community comments, and a precision of 90.65%, a recall of 93.57%, and an f-score 92.09% for Twitter tweets. We expect that our approach can help to improve the current abusive word detection system, which is crucial for several web-based services including social networking services and online games.
Original language | English |
---|---|
Pages (from-to) | 22-31 |
Number of pages | 10 |
Journal | Decision Support Systems |
Volume | 113 |
DOIs | |
Publication status | Published - 2018 Sept |
Bibliographical note
Funding Information:This work was supported by the Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (R0124-16-0002, Emotional Intelligence Technology to Infer Human Emotion and Carry on Dialogue Accordingly).
Funding Information:
This work was supported by the Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government ( MSIP ) ( R0124-16-0002 , Emotional Intelligence Technology to Infer Human Emotion and Carry on Dialogue Accordingly).
Publisher Copyright:
© 2018 Elsevier B.V.
All Science Journal Classification (ASJC) codes
- Management Information Systems
- Information Systems
- Developmental and Educational Psychology
- Arts and Humanities (miscellaneous)
- Information Systems and Management