TY - JOUR
T1 - Amplifier for scanning tunneling microscopy at MHz frequencies
AU - Bastiaans, K. M.
AU - Benschop, T.
AU - Chatzopoulos, D.
AU - Cho, D.
AU - Dong, Q.
AU - Jin, Y.
AU - Allan, M. P.
N1 - Publisher Copyright:
© 2018 Author(s).
PY - 2018/9/1
Y1 - 2018/9/1
N2 - Conventional scanning tunneling microscopy (STM) is limited to a bandwidth of a few kHz around DC. Here, we develop, build, and test a novel amplifier circuit capable of measuring the tunneling current in the MHz regime while simultaneously performing conventional STM measurements. This is achieved with an amplifier circuit including a LC tank with a quality factor exceeding 600 and a home-built, low-noise high electron mobility transistor. The amplifier circuit functions while simultaneously scanning with atomic resolution in the tunneling regime, i.e., at junction resistances in the range of giga-ohms, and down towards point contact spectroscopy. To enable high signal-to-noise ratios and meet all technical requirements for the inclusion in a commercial low temperature, ultra-high vacuum STM, we use superconducting cross-wound inductors and choose materials and circuit elements with low heat load. We demonstrate the high performance of the amplifier by spatially mapping the Poissonian noise of tunneling electrons on an atomically clean Au(111) surface. We also show differential conductance spectroscopy measurements at 3 MHz, demonstrating superior performance over conventional spectroscopy techniques. Further, our technology could be used to perform impedance matched spin resonance and distinguish Majorana modes from more conventional edge states.
AB - Conventional scanning tunneling microscopy (STM) is limited to a bandwidth of a few kHz around DC. Here, we develop, build, and test a novel amplifier circuit capable of measuring the tunneling current in the MHz regime while simultaneously performing conventional STM measurements. This is achieved with an amplifier circuit including a LC tank with a quality factor exceeding 600 and a home-built, low-noise high electron mobility transistor. The amplifier circuit functions while simultaneously scanning with atomic resolution in the tunneling regime, i.e., at junction resistances in the range of giga-ohms, and down towards point contact spectroscopy. To enable high signal-to-noise ratios and meet all technical requirements for the inclusion in a commercial low temperature, ultra-high vacuum STM, we use superconducting cross-wound inductors and choose materials and circuit elements with low heat load. We demonstrate the high performance of the amplifier by spatially mapping the Poissonian noise of tunneling electrons on an atomically clean Au(111) surface. We also show differential conductance spectroscopy measurements at 3 MHz, demonstrating superior performance over conventional spectroscopy techniques. Further, our technology could be used to perform impedance matched spin resonance and distinguish Majorana modes from more conventional edge states.
UR - http://www.scopus.com/inward/record.url?scp=85054160114&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054160114&partnerID=8YFLogxK
U2 - 10.1063/1.5043267
DO - 10.1063/1.5043267
M3 - Article
C2 - 30278769
AN - SCOPUS:85054160114
SN - 0034-6748
VL - 89
JO - Review of Scientific Instruments
JF - Review of Scientific Instruments
IS - 9
M1 - 093709
ER -