Amicable Aid: Perturbing Images to Improve Classification Performance

Juyeop Kim, Jun Ho Choi, Soobeom Jang, Jong Seok Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

While adversarial perturbation of images to attack deep image classification models pose serious security concerns in practice, this paper suggests a novel paradigm where the concept of image perturbation can benefit classification performance, which we call amicable aid. We show that by taking the opposite search direction of perturbation, an image can be modified to yield higher classification confidence and even a misclassified image can be made correctly classified. This can be also achieved with a large amount of perturbation by which the image is made unrecognizable by human eyes. The mechanism of the amicable aid is explained in the viewpoint of the underlying natural image manifold. Furthermore, we investigate the universal amicable aid, i.e., a fixed perturbation can be applied to multiple images to improve their classification results. While it is challenging to find such perturbations, we show that making the decision boundary as perpendicular to the image manifold as possible via training with modified data is effective to obtain a model for which universal amicable perturbations are more easily found.

Original languageEnglish
Title of host publicationICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728163277
DOIs
Publication statusPublished - 2023
Event48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 - Rhodes Island, Greece
Duration: 2023 Jun 42023 Jun 10

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2023-June
ISSN (Print)1520-6149

Conference

Conference48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
Country/TerritoryGreece
CityRhodes Island
Period23/6/423/6/10

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Amicable Aid: Perturbing Images to Improve Classification Performance'. Together they form a unique fingerprint.

Cite this