Abstract
Existing approaches for aligning large language models with human preferences face a trade-off that requires a separate reward model (RM) for on-policy learning. In this paper, we present a novel alignment framework, SELF-JUDGE that (1) does on-policy learning and 2) is parameter efficient, as it does not require an additional RM for evaluating the samples for on-policy learning. To this end, we propose Judge-augmented Supervised Fine-Tuning (JSFT) to train a single model to act as both a policy and a judge. Specifically, we view the pairwise judgment task, choosing the better response from a response pair, as a special case of the instruction-following task. The resulting model can judge preferences of on-the-fly responses from current policy initialized from itself. Experimental results show the efficacy of SELF-JUDGE, outperforming baselines in preference benchmarks. We also show that the rejecting sampling by itself can improve performance further without an additional evaluator.
Original language | English |
---|---|
Title of host publication | Long Papers |
Editors | Lun-Wei Ku, Andre F. T. Martins, Vivek Srikumar |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 11442-11459 |
Number of pages | 18 |
ISBN (Electronic) | 9798891760943 |
DOIs | |
Publication status | Published - 2024 |
Event | 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Bangkok, Thailand Duration: 2024 Aug 11 → 2024 Aug 16 |
Publication series
Name | Proceedings of the Annual Meeting of the Association for Computational Linguistics |
---|---|
Volume | 1 |
ISSN (Print) | 0736-587X |
Conference
Conference | 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 |
---|---|
Country/Territory | Thailand |
City | Bangkok |
Period | 24/8/11 → 24/8/16 |
Bibliographical note
Publisher Copyright:© 2024 Association for Computational Linguistics.
All Science Journal Classification (ASJC) codes
- Computer Science Applications
- Linguistics and Language
- Language and Linguistics