Ag@SiO2-entrapped hydrogel microarray: A new platform for a metal-enhanced fluorescence-based protein assay

Eunji Jang, Minsu Kim, Won Gun Koh

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

We developed a novel protein-based bioassay platform utilizing metal-enhanced fluorescence (MEF), which is a hydrogel microarray entrapping silica-coated silver nanoparticles (Ag@SiO2). As a model system, different concentrations of glucose were detected using a fluorescence method by sequential bienzymatic reaction of hydrogel-entrapped glucose oxidase (GOX) and peroxidase (POD) inside a hydrogel microarray. Microarrays based on poly(ethylene glycol)(PEG) hydrogels were prepared by photopatterning a solution containing PEG diacrylate (PEG-DA), photoinitiator, enzymes, and Ag@SiO2. The resulting hydrogel microarrays were able to entrap both enzymes and Ag@SiO2 without leaching and deactivation problems. The presence of Ag@SiO2 within the hydrogel microarray enhanced the fluorescence signal, and the extent of the enhancement was dependent on the thickness of silica shells and the amount of Ag@SiO2. Optimal MEF effects were achieved when the thickness of the silica shell was 17.5 nm, and 0.5 mg mL-1 of Ag@SiO2 was incorporated into the assay systems. Compared with the standard hydrogel microarray-based assay performed without Ag@SiO2, more than a 4-fold fluorescence enhancement was observed in a glucose concentration range between 10-3 mM and 10.0 mM using hydrogel microarray entrapping Ag@SiO2, which led to significant improvements in the sensitivity and the limit of detection (LOD). The hydrogel microarray system presented in this study could be successfully combined with a microfluidic device as an initial step to create an MEF-based micro-total-analysis-system (μ-TAS).

Original languageEnglish
Pages (from-to)3375-3383
Number of pages9
JournalAnalyst
Volume140
Issue number10
DOIs
Publication statusPublished - 2015 May 21

Bibliographical note

Publisher Copyright:
© 2015 The Royal Society of Chemistry.

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Biochemistry
  • Environmental Chemistry
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Ag@SiO2-entrapped hydrogel microarray: A new platform for a metal-enhanced fluorescence-based protein assay'. Together they form a unique fingerprint.

Cite this