Abstract
The adsorption and steam regeneration of n-hexane, MEK, and toluene on an activated carbon fiber (ACF) were conducted for single, binary, and ternary systems and were compared with those on a granular activated carbon (GAC). An ACF bed showed not only larger adsorption capacity but also faster steam regeneration than the GAC bed. Also, the tailing effect of desorption on a GAC loaded with polar MEK was significant compared with the result on an ACF. Especially, after several adsorption-desorption cycles, there was a significant drop in the adsorption capacity of the GAC within 20% whereas the adsorption capacity of the ACF dropped within 5%. Because adsorption affinity on the ACF became stronger for toluene, MEK, and n-hexane in sequence, roll-up phenomena appeared for binary and ternary systems. Because the roll-up phenomenon was affected by the molar ratio (MR), the magnitude of roll-up increased with a decrease of MR. Therefore, the adsorption step in a TSA process could be determined largely by the behavior of a weak adsorbate in the adsorption bed, whereas a strong adsorbate could play a key role in the steam regeneration step. However, under a high MR, both the high concentration component and strongest adsorbed component played an important role in steam regeneration.
Original language | English |
---|---|
Pages (from-to) | 263-281 |
Number of pages | 19 |
Journal | Separation Science and Technology |
Volume | 36 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2001 Dec 3 |
Bibliographical note
Funding Information:This work was supported by KOSEF under project 95-0502-01-3.
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Chemical Engineering
- Process Chemistry and Technology
- Filtration and Separation