Adaptive dynamic cohesive fracture simulation using nodal perturbation and edge-swap operators

Glaucio H. Paulino, Kyoungsoo Park, Waldemar Celes, Rodrigo Espinha

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)


Dependence on mesh orientation impacts adversely the quality of computational solutions generated by cohesive zone models. For instance, when considering crack propagation along interfaces between finite elements of 4k structured meshes, both extension of crack length and crack angle are biased according to the mesh configuration. To address mesh orientation dependence in 4k structured meshes and to avoid undesirable crack patterns, we propose the use of nodal perturbation (NP) and edge-swap (ES) topological operation. To this effect, the topological data structure TopS (Int. J. Numer. Meth. Engng 2005; 64: 1529-1556), based on topological entities (node, element, vertex, edge and facet), is utilized so that it is possible to access adjacency information and to manage a consistent data structure in time proportional to the number of retrieved entities. In particular, the data structure allows the ES operation to be done in constant time. Three representative dynamic fracture examples using ES and NP operators are provided: crack propagation in the compact compression specimen, local branching instability, and fragmentation. These examples illustrate the features of the present computational framework in simulating a range of physical phenomena associated with cracking.

Original languageEnglish
Pages (from-to)1303-1343
Number of pages41
JournalInternational Journal for Numerical Methods in Engineering
Issue number11
Publication statusPublished - 2010 Dec

All Science Journal Classification (ASJC) codes

  • Numerical Analysis
  • General Engineering
  • Applied Mathematics


Dive into the research topics of 'Adaptive dynamic cohesive fracture simulation using nodal perturbation and edge-swap operators'. Together they form a unique fingerprint.

Cite this