Acid-base polyimide blends for the application as electrolyte membranes for fuel cells

Wonbong Jang, Saimani Sundar, Seunghyuk Choi, Yong Gun Shul, Haksoo Han

Research output: Contribution to journalArticlepeer-review

92 Citations (Scopus)


The synthesis and characterization of new acid-base polymer blend membranes for the use in polymer electrolyte membrane fuel cell is presented in this paper. A novel polymeric base is synthesized from 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2-bis [4-(4-aminophenoxy)phenyl] hexafluoropropane and diaminoacrydine hemisulfate where the diaminoacrydine hemisulfate contribute the tertiary nitrogen groups to the polyimide backbone. This base polyimide is blended with a polyimide having sulfonic acid group in the main chain. The sulfonated polyimide is synthesized from 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTDA), 4,4′-diaminobiphenyl 2,2′-disulfonic acid (BDSA), 2-bis [4-(4-aminophenoxy)phenyl] hexafluoropropane (HFBAPP). Various polyimide blends having different molar ratio of sulfonic acid group and acrydine group are synthesized and they are characterized for thermal stability, ion exchange capacity, water uptake, hydrolytic stability and proton conductivity. All the sulfonated polyimides have good thermal stability and exhibited three-step degradation pattern. With the increase in polymeric base content, IEC decreased as AB-0% (2.0640) > AB-10% (2.0058) > AB-20% (1.8792) > AB-30% (1.5686) > AB-40% (1.2670) > AB-50% (1.1690) > AB-75% (0.9098) and water uptake decreased as AB-0% (34.06%) > AB-10% (32.82%) > AB-20% (24.01%) > AB-30% (20.31%) > AB-40% (12.86%) > AB-50% (9.25%) > AB-75% (8.37%). Proton conductivity of the acid-base polyimide blends at 90 °C are AB-0% (0.197) > AB-10% (0.124) > AB-20% (0.122) > AB-30% (0.088) > AB-40% (0.080) > AB-50% (0.034) > AB-75% (0.025). Polyimide blends showed higher hydrolytic stability than the pure acid polyimide. Between the polyimide blends the hydrolytic stability increased with increase in the base polymer content which is attributed to the increase in ionic crosslink density which reduces the polymer swelling and hence the mechanical stability of the membrane increases.

Original languageEnglish
Pages (from-to)321-329
Number of pages9
JournalJournal of Membrane Science
Issue number1-2
Publication statusPublished - 2006 Sept 1

Bibliographical note

Funding Information:
This work was supported by the Ministry of Science and Technology of Korea through the National Research Laboratory Program and Yonsei Center for Clean Technology.

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • General Materials Science
  • Physical and Theoretical Chemistry
  • Filtration and Separation


Dive into the research topics of 'Acid-base polyimide blends for the application as electrolyte membranes for fuel cells'. Together they form a unique fingerprint.

Cite this