Abstract
This paper addresses the issue of electromagnetic interference (EMI) in electric vehicle supply equipment (EVSE) charging cables, which can disrupt the communication signal for the real-time monitoring of the charging status, leading to the termination of charging. We propose a dedicated measurement jig for the Combined Charging System Combo Type 1 (CCS-CT1) cable structure and models its electrical characteristics of the jig using the impedance peeling technique for de-embedding. The obtained pure S-parameters of CCS-CT1 are then used to conduct a simulation of the signal integrity problem caused by Gaussian noise, which is the worst-case scenario that can occur in a typical charging system. This paper suggests that the root cause of this problem may be related to the high-power AC/DC conversion device included in the EVSE, which uses a switch-mode power conversion (SMPC) method that involves nonlinear operation and can result in increased harmonic noise and a more complex signal protocol for precise control. Finally, this study provides insights into the challenges of implementing high-speed charging systems and offers a solution for obtaining the accurate electromagnetic characteristics of charging cables.
Original language | English |
---|---|
Article number | 5947 |
Journal | Energies |
Volume | 16 |
Issue number | 16 |
DOIs | |
Publication status | Published - 2023 Aug |
Bibliographical note
Publisher Copyright:© 2023 by the authors.
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Engineering (miscellaneous)
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Control and Optimization
- Electrical and Electronic Engineering