TY - JOUR
T1 - Accelerating Materials Discovery by High-Throughput GIWAXS Characterization of Quasi-2D Formamidinium Metal Halide Perovskites
AU - Yang, Jonghee
AU - Hidalgo, Juanita
AU - Song, Donghoon
AU - Kalinin, Sergei V.
AU - Correa-Baena, Juan Pablo
AU - Ahmadi, Mahshid
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2024/12/2
Y1 - 2024/12/2
N2 - The intriguing functionalities of emerging quasi-2D metal halide perovskites (MHPs) have led to further exploration of this material class for sustainable and scalable optoelectronic applications. However, the chemical complexities in precursors—primarily determined by the 2D:3D compositional ratio—result in uncontrolled phase heterogeneities in these materials, which compromises the optoelectronic performances. Yet, this phenomenon remains poorly understood due to the massive quasi-2D compositional space. To systematically explore the fundamental principles, herein, a high-throughput automated synthesis-characterization workflow is designed and implemented to formamidinium (FA)-based quasi-2D MHP system. It is revealed that the stable 3D-like phases, where the α-FAPbI3 surface is passivated by 2D spacers, exclusively emerge at the compositional range (35–55% of FAPbI3), deviating from the stoichiometric considerations. A quantitative crystallographic study via high-throughput grazing-incidence wide-angle X-ray scattering (GIWAXS) experiments integrated with automated peak analysis function quickly reveals that the 3D-like phases are vertically aligned, facilitating vertical charge conduction that can be beneficial for optoelectronic applications. Together, this study uncovers the optimal 2D:3D compositional range for complex quasi-2D MHP systems, realizing promising optoelectronic functionalities. The automated experimental workflow significantly accelerates materials discoveries and processing optimizations that are transferrable to other deposition methods, while providing fundamental insights into complex materials systems.
AB - The intriguing functionalities of emerging quasi-2D metal halide perovskites (MHPs) have led to further exploration of this material class for sustainable and scalable optoelectronic applications. However, the chemical complexities in precursors—primarily determined by the 2D:3D compositional ratio—result in uncontrolled phase heterogeneities in these materials, which compromises the optoelectronic performances. Yet, this phenomenon remains poorly understood due to the massive quasi-2D compositional space. To systematically explore the fundamental principles, herein, a high-throughput automated synthesis-characterization workflow is designed and implemented to formamidinium (FA)-based quasi-2D MHP system. It is revealed that the stable 3D-like phases, where the α-FAPbI3 surface is passivated by 2D spacers, exclusively emerge at the compositional range (35–55% of FAPbI3), deviating from the stoichiometric considerations. A quantitative crystallographic study via high-throughput grazing-incidence wide-angle X-ray scattering (GIWAXS) experiments integrated with automated peak analysis function quickly reveals that the 3D-like phases are vertically aligned, facilitating vertical charge conduction that can be beneficial for optoelectronic applications. Together, this study uncovers the optimal 2D:3D compositional range for complex quasi-2D MHP systems, realizing promising optoelectronic functionalities. The automated experimental workflow significantly accelerates materials discoveries and processing optimizations that are transferrable to other deposition methods, while providing fundamental insights into complex materials systems.
KW - accelerated materials discovery
KW - grazing-incidence wide-angle X-ray scattering
KW - high-throughput synthesis
KW - quasi-2D perovskites
UR - http://www.scopus.com/inward/record.url?scp=85200755924&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85200755924&partnerID=8YFLogxK
U2 - 10.1002/adfm.202409293
DO - 10.1002/adfm.202409293
M3 - Article
AN - SCOPUS:85200755924
SN - 1616-301X
VL - 34
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 49
M1 - 2409293
ER -