Accelerated tibia fracture healing in traumatic brain injury in accordance with increased hematoma formation

Dong Woo Shim, Hyunjoo Hong, Kwang Chun Cho, Se Hwa Kim, Jin Woo Lee, Seung Yong Sung

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Background: Traumatic brain injury (TBI) has been known to accelerate bone healing. Many cells and molecules have been investigated but the exact mechanism is still unknown. The neuroinflammatory state of TBI has been reported recently. We aimed to investigate the effect of TBI on fracture healing in patients with tibia fractures and assess whether the factors associated with hematoma formation changed more significantly in the laboratory tests in the fractures accompanied with TBI. Methods: We retrospectively investigated patients who were surgically treated for tibia fractures and who showed secondary bone healing. Patients with and without TBI were divided for comparative analyses. Radiological parameters were time to callus formation and the largest callus ratio during follow-up. Preoperative levels of complete blood count and chemical battery on admission were measured in all patients. Subgroup division regarding age, gender, open fracture, concomitant fracture and severity of TBI were compared. Results: We included 48 patients with a mean age of 44.9 (range, 17–78), of whom 35 patients (72.9%) were male. There were 12 patients with TBI (Group 1) and 36 patients without TBI (Group 2). Group 1 showed shorter time to callus formation (P < 0.001), thicker callus ratio (P = 0.015), leukocytosis and lymphocytosis (P ≤ 0.028), and lower red blood cell counts (RBCs), hemoglobin, and hematocrit (P < 0.001). Aging and severity of TBI were correlated with time to callus formation and callus ratio (P ≤ 0.003) while gender, open fracture, and concomitant fracture were unremarkable. Conclusion: Tibia fractures with TBI showed accelerated bone healing and superior measurements associated with hematoma formation (lymphocytes, RBCs, hemoglobin, hematocrit). Promoted fracture healing in TBI was correlated with the enhanced proinflammatory state. Level of evidence: III, case control study.

Original languageEnglish
Article number1110
JournalBMC Musculoskeletal Disorders
Volume23
Issue number1
DOIs
Publication statusPublished - 2022 Dec

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

All Science Journal Classification (ASJC) codes

  • Rheumatology
  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Accelerated tibia fracture healing in traumatic brain injury in accordance with increased hematoma formation'. Together they form a unique fingerprint.

Cite this