AC field-induced polymer electroluminescence with single wall carbon nanotubes

Jinwoo Sung, Yeon Sik Choi, Seok Ju Kang, Sung Hwan Cho, Tae Woo Lee, Cheolmin Park

Research output: Contribution to journalArticlepeer-review

63 Citations (Scopus)


We developed a high-performance field-induced polymer electroluminescence (FPEL) device consisting of four stacked layers: a top metal electrode/thin solution-processed nanocomposite film of single wall carbon nanotubes (SWNTs) and a fluorescent polymer/insulator/transparent bottom electrode working under an alternating current (AC) electric field. A small amount of SWNTs that were highly dispersed in the fluorescent polymer matrix by a conjugate block copolymer dispersant significantly enhanced EL, and we were able to realize an SWNT-FPEL device with a light emission of approximately 350 cd/m2 at an applied voltage of ±25 V and an AC frequency of 300 kHz. The brightness of the SWNT-FPEL device is much greater than those of other AC-based organic or even inorganic ELs that generally require at least a few hundred volts. Light is emitted from our SWNT-FPEL device because of the sequential injection of field-induced holes and then electron carriers through ambipolar carbon nanotubes under an AC field, followed by exciton formation in the conjugated organic layer. Field-induced bipolar charge injection provides great material design freedom for our devices; the energy level does not have to be aligned between the electrode and the emission layer, and the balance of the carrier injected and transported can be altered in contrast to that in conventional organic light-emitting diodes, leading to an extremely cost-effective and unified device architecture that is applicable to all red-green-blue fluorescent polymers.

Original languageEnglish
Pages (from-to)966-972
Number of pages7
JournalNano letters
Issue number3
Publication statusPublished - 2011 Mar 9

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering


Dive into the research topics of 'AC field-induced polymer electroluminescence with single wall carbon nanotubes'. Together they form a unique fingerprint.

Cite this