Abstract
A novel synthetic process was developed to synthesize nano-sized core-shell catalysts through atomic rearrangement by heat-treatment. Agglomeration of nanoparticles caused by the high-temperature heat-treatment was alleviated by using a modified protective coating method. In this method, the carbon layer formed by the carbonization of polydopamine serves as a protective coating layer, which suppresses the sintering of the catalyst particles continuously until the high-temperature heat-treatment is completed. Later, the carbonized carbon layer is removed by ozone treatment because it blocks the active site of the catalyst. Since ozone is a highly oxidative gas, it can selectively remove the carbon layer at room temperature in just 7 minutes without affecting the physical properties of the catalyst itself, which makes this method suitable for mass production. The Pt-based alloy catalyst was prepared by this unique process was proved to have a Pt-rich shell structure, and the particles can remain small (∼5 nm) even after high-temperature heat-treatment, thus exhibiting high oxygen reduction reaction (ORR) activity in fuel cells.
Original language | English |
---|---|
Pages (from-to) | F285-F290 |
Journal | Journal of the Electrochemical Society |
Volume | 165 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2018 |
Bibliographical note
Publisher Copyright:© 2018 The Electrochemical Society.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Surfaces, Coatings and Films
- Electrochemistry
- Materials Chemistry