A stock recommendation system exploiting rule discovery in stock databases

You Min Ha, Sanghyun Park, Sang Wook Kim, Jung Im Won, Jee Hee Yoon

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

This paper addresses an approach that recommends investment types to stock investors by discovering useful rules from past changing patterns of stock prices in databases. First, we define a new rule model for recommending stock investment types. For a frequent pattern of stock prices, if its subsequent stock prices are matched to a condition of an investor, the model recommends a corresponding investment type for this stock. The frequent pattern is regarded as a rule head, and the subsequent part a rule body. We observed that the conditions on rule bodies are quite different depending on dispositions of investors while rule heads are independent of characteristics of investors in most cases. With this observation, we propose a new method that discovers and stores only the rule heads rather than the whole rules in a rule discovery process. This allows investors to impose various conditions on rule bodies flexibly, and also improves the performance of a rule discovery process by reducing the number of rules to be discovered. For efficient discovery and matching of rules, we propose methods for discovering frequent patterns, constructing a frequent pattern base, and its indexing. We also suggest a method that finds the rules matched to a query from a frequent pattern base, and a method that recommends an investment type by using the rules. Finally, we verify the effectiveness and the efficiency of our approach through extensive experiments with real-life stock data.

Original languageEnglish
Pages (from-to)1140-1149
Number of pages10
JournalInformation and Software Technology
Volume51
Issue number7
DOIs
Publication statusPublished - 2009 Jul

Bibliographical note

Funding Information:
This research was supported by the Korea Science and Engineering Foundation (KOSEF) Grant (No. R01-2008-000-20872-0) funded by the Korea government (MEST) and also was supported by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center) support program (No. IITA-2009-C1090-0902-0040) supervised by the IITA (Institute for Information Technology Advancement).

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A stock recommendation system exploiting rule discovery in stock databases'. Together they form a unique fingerprint.

Cite this