Abstract
The endoplasmic reticulum (ER) is selectively degraded by ER-phagy to maintain cell homeostasis. α-synuclein accumulates in the ER, causing ER stress that contributes to neurodegeneration in Parkinson’s disease (PD), but the role of ER-phagy in α-synuclein modulation is largely unknown. Here, we investigated the mechanisms by which ER-phagy selectively recognizes α-synuclein for degradation in the ER. We found that ER-phagy played an important role in the degradation of α-synuclein and recovery of ER function through interaction with FAM134B, where calnexin is required for the selective FAM134B-mediated α-synuclein clearance via ER-phagy. Overexpression of α-synuclein in the ER of the substantia nigra (SN) resulted in marked loss of dopaminergic neurons and motor deficits, mimicking PD characteristics. However, enhancement of ER-phagy using FAM134B overexpression in the SN exerted neuroprotective effects on dopaminergic neurons and recovered motor performance. These data suggest that ER-phagy represents a specific ER clearance mechanism for the degradation of α-synuclein.
Original language | English |
---|---|
Article number | e2221929120 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 120 |
Issue number | 37 |
DOIs | |
Publication status | Published - 2023 |
Bibliographical note
Publisher Copyright:Copyright © 2023 the Author(s).
All Science Journal Classification (ASJC) codes
- General