A planar simple shear test and flow behavior in a superplastic Al-Mg alloy

D. H. Bae, A. K. Ghosh

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)


Superplasticity is generally studied by performing tensile and gas-pressure-bulge tests. In formed parts, however, a variety of strain states, including in-plane shear, are encountered. The understanding of the mechanical response in shear is helpful in the study of superplastic metal forming. In this study, a device for a planar simple shear test was designed and used to perform tests on a superplastic Al-Mg alloy sheet at the elevated temperatures of 500°C (773K) and 550°C (823K). In such a test, the incremental rotation of the principal strain axes and specimen-end effects during deformation can complicate the determination of true mechanical response. The possible approximations regarding the strain state in the specimen gage have been investigated. The σ3e curves developed based on a simple-shear assumption show a lower flow stress than that under uniaxial tension, and strain hardening is related to dynamic grain growth. The rate of strain hardening at a fixed εe level is essentially the same for both uniaxial tension and shear, but the difference in the effective stress between uniaxial tension and shear depends upon strain rate and temperature. This study marks the first known attempt to characterize large strain response for superplastic metals under conditions of simple shear.

Original languageEnglish
Pages (from-to)2465-2471
Number of pages7
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Volume34 A
Issue number11
Publication statusPublished - 2003 Nov

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys


Dive into the research topics of 'A planar simple shear test and flow behavior in a superplastic Al-Mg alloy'. Together they form a unique fingerprint.

Cite this