A novel electrodeposition process for plating Zn-Ni-Cd alloys

Hansung Kim, Branko N. Popov, Ken S. Chen

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)


Zn-Ni-Cd alloy was electrodeposited from an alkaline electrolytic bath under potentiostatic conditions. Bath analyses using a pH concentration diagram reveal that addition of a complexing agent is essential to maintain the bath stability. Introduction of a low concentration of CdSO4 reduces the anomalous nature of the Zn-Ni deposit. Deposits obtained from the electrolytic bath which contains 60 g/L of ZnSO4·7H2O, 40 g/L of NiSO4·6H2O, 1 g/L of CdSO4, and 80 g/L of (NH4)2SO4 in the presence of additives and ammonium hydroxide at pH 9.3 has a composition of 50 wt % of Zn, 28 wt % of Ni, and 22 wt % of Cd. By optimizing the Cd concentration in the bath, it is possible to control the amount of Ni in the deposit. At large overpotentials, the surface of the electrode is covered with hydrogen which lowers the deposition current density. Rotating disk electrode studies indicated that the deposition of Cd is under mass control, while Ni deposition is under kinetic control.

Original languageEnglish
Pages (from-to)C81-C88
JournalJournal of the Electrochemical Society
Issue number2
Publication statusPublished - 2003 Feb

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Materials Chemistry
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Renewable Energy, Sustainability and the Environment


Dive into the research topics of 'A novel electrodeposition process for plating Zn-Ni-Cd alloys'. Together they form a unique fingerprint.

Cite this