A new NAND-type flash memory package with smart buffer system for spatial and temporal localities

Jung Hoon Lee, Gi Ho Park, Shin Dug Kim

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

This research is to design a high performance NAND-type flash memory package with a smart buffer cache that enhances the exploitation of spatial and temporal locality. The proposed buffer structure in a NAND flash memory package, called as a smart buffer cache, consists of three parts, i.e., a fully-associative victim buffer with a small page size, a fully-associative spatial buffer with a large page size, and a dynamic fetching unit. This new NAND-type flash memory package can achieve dramatically higher performance and lower power consumption compared with any conventional NAND-type flash memory module. Our results show that the NAND flash memory package with a smart buffer cache can reduce the miss ratio by around 70% and the average memory access time by around 67%, over the conventional NAND flash memory configuration. Also, the average miss ratio and the average memory access time of the package module with smart buffer cache for a given buffer space (e.g., 3 KB) can achieve better performance than package modules with a conventional direct-mapped buffer with eight times (e.g., 32 KB) or than a fully-associative configuration with twice as much space (e.g., 8 KB).

Original languageEnglish
Pages (from-to)111-123
Number of pages13
JournalJournal of Systems Architecture
Volume51
Issue number2
DOIs
Publication statusPublished - 2005 Feb

All Science Journal Classification (ASJC) codes

  • Software
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'A new NAND-type flash memory package with smart buffer system for spatial and temporal localities'. Together they form a unique fingerprint.

Cite this