A magnetically powered nanomachine with a DNA clutch

Mouhong Lin, Jung Uk Lee, Youngjoo Kim, Gooreum Kim, Yunmin Jung, Ala Jo, Mansoo Park, Sol Lee, Jungsu David Lah, Jongseong Park, Kunwoo Noh, Jae Hyun Lee, Minsuk Kwak, Dominik Lungerich, Jinwoo Cheon

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Machines found in nature and human-made machines share common components, such as an engine, and an output element, such as a rotor, linked by a clutch. This clutch, as seen in biological structures such as dynein, myosin or bacterial flagellar motors, allows for temporary disengagement of the moving parts from the running engine. However, such sophistication is still challenging to achieve in artificial nanomachines. Here we present a spherical rotary nanomotor with a reversible clutch system based on precise molecular recognition of built-in DNA strands. The clutch couples and decouples the engine from the machine’s rotor in response to encoded inputs such as DNA or RNA. The nanomotor comprises a porous nanocage as a spherical rotor to confine the magnetic engine particle within the nanospace (∼0.004 μm3) of the cage. Thus, the entropically driven irreversible disintegration of the magnetic engine and the spherical rotor during the disengagement process is eliminated, and an exchange of microenvironmental inputs is possible through the nanopores. Our motor is only 200 nm in size and the clutch-mediated force transmission powered by an embedded ferromagnetic nanocrystal is high enough (∼15.5 pN at 50 mT) for the in vitro mechanical activation of Notch and integrin receptors, demonstrating its potential as nano-bio machinery.

Original languageEnglish
Pages (from-to)646-651
Number of pages6
JournalNature Nanotechnology
Volume19
Issue number5
DOIs
Publication statusPublished - 2024 May

Bibliographical note

Publisher Copyright:
© The Author(s), under exclusive licence to Springer Nature Limited 2024.

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering
  • General Materials Science
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A magnetically powered nanomachine with a DNA clutch'. Together they form a unique fingerprint.

Cite this