A flexible numerical approach for quantification of epistemic uncertainty

Xiaoxiao Chen, Eun Jae Park, Dongbin Xiu

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

In the field of uncertainty quantification (UQ), epistemic uncertainty often refers to the kind of uncertainty whose complete probabilistic description is not available, largely due to our lack of knowledge about the uncertainty. Quantification of the impacts of epistemic uncertainty is naturally difficult, because most of the existing stochastic tools rely on the specification of the probability distributions and thus do not readily apply to epistemic uncertainty. And there have been few studies and methods to deal with epistemic uncertainty. A recent work can be found in [J. Jakeman, M. Eldred, D. Xiu, Numerical approach for quantification of epistemic uncertainty, J. Comput. Phys. 229 (2010) 4648-4663], where a framework for numerical treatment of epistemic uncertainty was proposed. The method is based on solving an encapsulation problem, without using any probability information, in a hypercube that encapsulates the unknown epistemic probability space. If more probabilistic information about the epistemic variables is known a posteriori, the solution statistics can then be evaluated at post-process steps. In this paper, we present a new method, similar to that of Jakeman et al. but significantly extending its capabilities. Most notably, the new method (1) does not require the encapsulation problem to be in a bounded domain such as a hypercube; (2) does not require the solution of the encapsulation problem to converge point-wise. In the current formulation, the encapsulation problem could reside in an unbounded domain, and more importantly, its numerical approximation could be sought in L p norm. These features thus make the new approach more flexible and amicable to practical implementation. Both the mathematical framework and numerical analysis are presented to demonstrate the effectiveness of the new approach.

Original languageEnglish
Pages (from-to)211-224
Number of pages14
JournalJournal of Computational Physics
Volume240
DOIs
Publication statusPublished - 2013 May 1

All Science Journal Classification (ASJC) codes

  • Numerical Analysis
  • Modelling and Simulation
  • Physics and Astronomy (miscellaneous)
  • Physics and Astronomy(all)
  • Computer Science Applications
  • Computational Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'A flexible numerical approach for quantification of epistemic uncertainty'. Together they form a unique fingerprint.

Cite this