Abstract
We propose an efficient monolithic numerical procedure based on a projection method for solving natural convection problems. In the present monolithic method, the buoyancy, linear diffusion, and nonlinear convection terms are implicitly advanced by applying the Crank-Nicolson scheme in time. To avoid an otherwise inevitable iterative procedure in solving the monolithic discretized system, we use a linearization of the nonlinear convection terms and approximate block lower-upper (LU) decompositions along with approximate factorization. Numerical simulations demonstrate that the proposed method is more stable and computationally efficient than other semi-implicit methods, preserving temporal second-order accuracy.
Original language | English |
---|---|
Pages (from-to) | 160-166 |
Number of pages | 7 |
Journal | Journal of Computational Physics |
Volume | 314 |
DOIs | |
Publication status | Published - 2016 Jun 1 |
Bibliographical note
Publisher Copyright:© 2016 Elsevier Inc.
All Science Journal Classification (ASJC) codes
- Numerical Analysis
- Modelling and Simulation
- Physics and Astronomy (miscellaneous)
- Physics and Astronomy(all)
- Computer Science Applications
- Computational Mathematics
- Applied Mathematics