Abstract
Improving customer-perceived service quality is a critical mission of telecommunication service providers. Using 35 billion call records, we develop a call quality score model to predict customer complaint calls. The score model consists of two components: service quality score and connectivity score models. It also incorporates human psychological impacts such as the peak and end effects. We implement a large-sized data processing system that manages real-time service logs to generate quality scores at the customer level using big data processing technology and analysis techniques. The experimental results confirm the validity of the developed model in distinguishing probable complaint callers. With the adoption of the system, the first call resolution rate of the call center increased from 45% to 73%, and the field engineer dispatch rate from 46% to 25%.
Original language | English |
---|---|
Article number | 4670231 |
Journal | Mobile Information Systems |
Volume | 2017 |
DOIs | |
Publication status | Published - 2017 |
Bibliographical note
Funding Information:This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012R1A1A2007890).
Publisher Copyright:
© 2017 Hyunglok Jung et al.
All Science Journal Classification (ASJC) codes
- Computer Science Applications
- Computer Networks and Communications