A credit scoring model based on the Myers–Briggs type indicator in online peer-to-peer lending

Hyunwoo Woo, So Young Sohn

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Although psychometric features have been considered for alternative credit scoring, they have not yet been applied to peer-to-peer (P2P) lending because such information is not available on platforms. This study proposed an alternative credit scoring model for P2P lending by extracting typical personality types inferred from the borrowers’ job category. We projected a virtual space of borrowers by using the affinity matrix based on the Myers–Briggs type indicator (MBTI) that fits each job category. Applying the distance in this space to Lending Club data, we used locally weighted logistic regression to vary the coefficients of the variables, which affect loan repayments, with each MBTI type for predicting the default probability. We found that each MBTI type’s credit scoring model has different significant variables. This study provides insights into breakthroughs in developing alternative credit scoring for P2P lending.

Original languageEnglish
Article number42
JournalFinancial Innovation
Volume8
Issue number1
DOIs
Publication statusPublished - 2022 Dec

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

All Science Journal Classification (ASJC) codes

  • Finance
  • Management of Technology and Innovation

Fingerprint

Dive into the research topics of 'A credit scoring model based on the Myers–Briggs type indicator in online peer-to-peer lending'. Together they form a unique fingerprint.

Cite this