A CMOS VEGF Sensor for Cancer Diagnosis Using a Peptide Aptamer-Based Functionalized Microneedle

Seungwoo Song, Jukwan Na, Moon Hyung Jang, Hyeyeon Lee, Hye Soo Lee, Yong Beom Lim, Heonjin Choi, Youngcheol Chae

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

This paper presents the first CMOS Vascular Endothelial Growth Factor (VEGF) sensor for cancer diagnosis directly from human blood. The sensor incorporates a peptide aptamer-based microneedle that allows the detection of electrochemical reactions with VEGF. This results in a capacitance change between the microneedles and then reads out by a two-step capacitance-to-digital converter (CDC). The proposed two-step CDC consists of a coarse 5b slope ADC and a fine 14b continuous-time delta-sigma modulator (CTDSM). During slow peptide-binding, the slope ADC performs a coarse conversion and the results are used to adjust the current level of the stimulator. After settling of the peptide-binding, based on an adjusted stimulation current, the CTDSM measures the small capacitance changes of the sensor. The prototype chip is fabricated in a 65-nm CMOS process, occupying a 0.87 mm 2 active area. The power consumption is 270 muW. Thanks to the two-step approach, this work achieves a wide dynamic range of 18.3b, covering a large sensor-to-sensor variation. It also achieves a peak resolution of 13.7b, while maintaining errors in 1 to 100 nF baseline capacitance. The overall sensor system successfully detects the VEGF in both phosphate-buffered saline (PBS) and human blood serum. Without the use of precision instruments, this work achieves a resolution of 15 fM [Formula: see text] in range of 0.1 to 1000 pM and denotes the clear VEGF selectivity at 40× in PBS and 5× in the blood serum compared to other proteins (IgG, Con A, and cholera toxin).

Original languageEnglish
Pages (from-to)1288-1299
Number of pages12
JournalIEEE Transactions on Biomedical Circuits and Systems
Volume13
Issue number6
DOIs
Publication statusPublished - 2019 Dec 1

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A CMOS VEGF Sensor for Cancer Diagnosis Using a Peptide Aptamer-Based Functionalized Microneedle'. Together they form a unique fingerprint.

Cite this