A chemically bonded NaTi2(PO4)3/rGO microsphere composite as a high-rate insertion anode for sodium-ion capacitors

Ha Kyung Roh, Myeong Seong Kim, Kyung Yoon Chung, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Kwang Chul Roh, Kwang Bum Kim

Research output: Contribution to journalArticlepeer-review

78 Citations (Scopus)


We report on the synthesis of a high rate NaTi2(PO4)3/graphene composite for use as an anode material for high power Na-ion hybrid capacitors with the following characteristics; (1) reduction of the particle size of NaTi2(PO4)3 to the nanometer scale in order to reduce the Na+ ion diffusion length, (2) chemical bonding between NaTi2(PO4)3 nanoparticles and graphene in order to improve electrical conductivity, and (3) interconnected nanoporous structures in order to allow easy access of Na+ ions to NaTi2(PO4)3. For this, the NaTi2(PO4)3/rGO microsphere composite was prepared via a facile spray drying method using a solution mixture of graphene oxide, NaH2PO4·2H2O, Ti(OC2H5)4 and NH4H2(PO4)3, in which all the components of the titanium were present as ionic species in order to facilitate the chemical bonding between NaTi2(PO4)3 and rGO in the composite. The NaTi2(PO4)3/rGO microsphere composite had a Ti-O-C bond between NaTi2(PO4)3 nanoparticles (<80 nm) and rGO and interconnected nanoporous structures. The NaTi2(PO4)3/rGO microsphere composite exhibited a near theoretical specific capacity of 133 mA h g-1 at a 0.1 C-rate and excellent rate capability (70% capacity retention at a 50 C-rate) with very stable cycling performance (only 2% capacity loss after 200 cycles at a high rate of 10C). Furthermore, the energy density and power density of the NHC assembled with a NaTi2(PO4)3/rGO anode and an AC-based cathode are far better than those of other NHCs assembled using other metal oxide-based anodes and AC cathodes.

Original languageEnglish
Pages (from-to)17506-17516
Number of pages11
JournalJournal of Materials Chemistry A
Issue number33
Publication statusPublished - 2017

Bibliographical note

Publisher Copyright:
© 2017 The Royal Society of Chemistry.

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)


Dive into the research topics of 'A chemically bonded NaTi2(PO4)3/rGO microsphere composite as a high-rate insertion anode for sodium-ion capacitors'. Together they form a unique fingerprint.

Cite this