A batch-by-batch free route for the continuous production of black phosphorus nanosheets for targeted combination cancer therapy

Bijay Kumar Poudel, Jungho Hwang, Sae Kwang Ku, Jong Oh Kim, Jeong Hoon Byeon

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Although 2D materials such as graphenes, chalcogenides, and black phosphorus (BP) have been intensively studied for a wide range of future technological applications, the multiple harsh reactions and post-treatments required to produce exfoliated nanosheets (NSs) represent challenging barriers to their realization. In the present study, a batch-by-batch free route to produce BP NSs was demonstrated, and the NSs were employed as base materials for the chemo-phototherapy of breast cancer. Specifically, a single-pass catalytic conversion of an all-in-one precursor (red P, Au–Sn, and iodine) in a heated tubular reactor (at a 650 °C wall temperature for 15.5 s) continuously produced crumpled BP NSs, and the NS-laden gas stream was passed through an activated carbon-packed tube to remove the reacted gases. Subsequently, doxorubicin (D), poly-l-lysine (L), and hyaluronic acid (H) were incorporated without further purification of these NSs to form BP-DLH, which was then employed in both in vitro and in vivo chemo-phototherapies. The biocompatibility and near-infrared-induced photothermal activity of BP NSs facilitate targeted delivery to CD44-overexpressing breast cancer cells to assist in the therapeutic efficacy of D.

Original languageEnglish
Pages (from-to)727-739
Number of pages13
JournalNPG Asia Materials
Volume10
Issue number8
DOIs
Publication statusPublished - 2018 Aug 1

Bibliographical note

Funding Information:
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (NRF-2018R1A2A1A05020683). This work was also supported by the NRF of Korea Grant funded by the Korean Government (NRF-2018R1A2A2A05021143).

Publisher Copyright:
© 2018, The Author(s).

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'A batch-by-batch free route for the continuous production of black phosphorus nanosheets for targeted combination cancer therapy'. Together they form a unique fingerprint.

Cite this