A 10 Gb/s hybrid PLL-based forwarded clock receiver in 65-nm CMOS

Kwanseo Park, Woorham Bae, Haram Ju, Jinhyung Lee, Gyu Seob Jeong, Yoonsoo Kim, Deog Kyoon Jeong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

A 10 Gb/s PLL-based forwarded clock receiver is implemented in 65-nm CMOS technology. The proposed architecture uses a hybrid PLL-based deskew which is combined with a PLL and a DLL. The PLL provides jitter filtering and the DLL performs deskewing by shifting the divided clocks. Since the operating frequency of the DLL is low, the power consumption of the DLL can be reduced. The measurement results show that the rms jitter of the recovered clock is only 576.7 fs which is quite low for a ring-oscillator-based PLL. The receiver chip occupies an active area of 0.0136 mm2 and consumes 22.1 mW at the data rate of 10 Gb/s.

Original languageEnglish
Title of host publication2015 IEEE International Symposium on Circuits and Systems, ISCAS 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2389-2392
Number of pages4
ISBN (Electronic)9781479983919
DOIs
Publication statusPublished - 2015 Jul 27
EventIEEE International Symposium on Circuits and Systems, ISCAS 2015 - Lisbon, Portugal
Duration: 2015 May 242015 May 27

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
Volume2015-July
ISSN (Print)0271-4310

Conference

ConferenceIEEE International Symposium on Circuits and Systems, ISCAS 2015
Country/TerritoryPortugal
CityLisbon
Period15/5/2415/5/27

Bibliographical note

Publisher Copyright:
© 2015 IEEE.

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A 10 Gb/s hybrid PLL-based forwarded clock receiver in 65-nm CMOS'. Together they form a unique fingerprint.

Cite this