Abstract
In this paper, a novel approach for the registration method of 3D point cloud maps is presented. During the operation of unmanned system, the construction of 3D maps for the environment is an important prerequisite for many navigation tasks. Generally 3D maps are widely utilized to recognize the location of the unmanned agent. Traditional map aligning techniques that use ICP (Iterative Closest Point) method relate points having the closest distance in different cloud maps in order to combine and extend the 3D maps. The method can be easily adopted in registration among sparse point cloud maps or consecutive scanning problems. However, this approach takes long computation time when aligning large scale maps including a lot of points. Therefore, an improved 3D point cloud map registration method is proposed to register precisely and effectively two maps using low-cost cameras. By combining odometry information derived from the SLAM (Simultaneous Localization and Mapping) procedure and the 3D position of the selected image feature points, location of the coexisting places in both maps are extracted. Then, the estimation of rigid body transform between the origins of each map is achieved. The effectiveness of the presented method is quantitatively validated by experiment on challenging instances of the merging problem and comparison with an existing registration method.
Original language | English |
---|---|
Title of host publication | 2017 2nd International Conference on Robotics and Automation Engineering, ICRAE 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 373-378 |
Number of pages | 6 |
ISBN (Electronic) | 9781538613054 |
DOIs | |
Publication status | Published - 2018 Feb 13 |
Event | 2nd International Conference on Robotics and Automation Engineering, ICRAE 2017 - Shanghai, China Duration: 2017 Dec 29 → 2017 Dec 31 |
Publication series
Name | 2017 2nd International Conference on Robotics and Automation Engineering, ICRAE 2017 |
---|---|
Volume | 2017-December |
Other
Other | 2nd International Conference on Robotics and Automation Engineering, ICRAE 2017 |
---|---|
Country/Territory | China |
City | Shanghai |
Period | 17/12/29 → 17/12/31 |
Bibliographical note
Funding Information:ACKNOWLEDGMENT This project is partially supported by Microsoft Research. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2015R1A2A2A01007545).
Publisher Copyright:
© 2017 IEEE.
All Science Journal Classification (ASJC) codes
- Control and Optimization
- Mechanical Engineering
- Control and Systems Engineering