Abstract
X-linked adrenoleukodystrophy (X-ALD), caused by an ABCD1 mutation, is a progressive neurodegenerative disorder associated with the accumulation of very long-chain fatty acids (VLCFA). Cerebral inflammatory demyelination is the major feature of childhood cerebral ALD (CCALD), the most severe form of ALD, but its underlying mechanism remains poorly understood. Here, we identify the aberrant production of cholesterol 25-hydroxylase (CH25H) and 25-hydroxycholesterol (25-HC) in the cellular context of CCALD based on the analysis of ALD patient-derived induced pluripotent stem cells and ex vivo fibroblasts. Intriguingly, 25-HC, but not VLCFA, promotes robust NLRP3 inflammasome assembly and activation via potassium efflux-, mitochondrial reactive oxygen species (ROS)- and liver X receptor (LXR)-mediated pathways. Furthermore, stereotaxic injection of 25-HC into the corpus callosum of mouse brains induces microglial recruitment, interleukin-1β production, and oligodendrocyte cell death in an NLRP3 inflammasome-dependent manner. Collectively, our results indicate that 25-HC mediates the neuroinflammation of X-ALD via activation of the NLRP3 inflammasome.
Original language | English |
---|---|
Article number | 13129 |
Journal | Nature communications |
Volume | 7 |
DOIs | |
Publication status | Published - 2016 Oct 25 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea Grants funded by the Korean Government (2013R1A2A2A01067985), and by the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIP (2012M3A9B4028631, 2012M3A9C7050126, 2012M3A9C6049724 and 2015M3A9B6073856), and by the Ministry of Health & Welfare, Republic of Korea (HI15C0916).
Publisher Copyright:
© The Author(s) 2016.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Physics and Astronomy(all)