Abstract
Major ginsenosides in ginseng (Panax ginseng) and its products are highly glycosylated, hence poorly absorbed in the gastrointestinal tract. β-Glycosidase-assisted deglycosylation of pure ginsenosides was peformed to study bioconversion mechanisms. Ginsenoside standard compounds, crude saponin, and red ginseng extracts were incubated with β-glycosidase (0.05% w/v, 55°C). β-Glycosidase has a broad specificity for β-glycosidic bonds, hydrolyzing the β-(1→6), α-(1→6), and α-(1→2) glycosidic linkages. The final metabolite of protopanaxadiol ginsenosides was Rg3 while the metabolite of protopanaxatriol ginsenosides was Rh1. β-Glycosidase treatment of red ginseng extracts resulted in a decrease in the amounts of Rb1, Rc, Re, and Rg2 after 24 h, whereas levels of the less glycosylated Rd, Rb1, Rg, Rg3, Rg1, and Rh1 forms increased. When crude saponin was incubated with β-glycosidase for 24 h, levels of Rb1, Rc, Re, and Rg1 decreased while levels of Rd, Rg3, and Rh1 increased as deglycosylated ginsenosides.
Original language | English |
---|---|
Pages (from-to) | 1629-1638 |
Number of pages | 10 |
Journal | Food Science and Biotechnology |
Volume | 22 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2013 Dec |
Bibliographical note
Funding Information:Acknowledgments The Nutrex Technology Co., Ltd., Naju, Korea provided financial support for this research.
All Science Journal Classification (ASJC) codes
- Biotechnology
- Food Science
- Applied Microbiology and Biotechnology